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The other analogy for linear systems as was treated in Control Engineering, and is
useful for Euler-Lagrange modeling.

Canonical forms

The state-space representation for a given transfer function is not unique, i.e., there are infinite-
number of possibilities to express a given transfer function in state-space form. However, there
are several forms that can be helpful in the design of controller or observer. Let us consider the
following general transfer function for single-input single-output system:

Y (s)

U(s)
=
b0s

n + b1s
n−1 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an
. (1)

For this transfer function, the state-space representation in canonical observable form is
given by 

ẋ1
ẋ2
...
ẋn

 =


0 0 · · · 0 −an
1 0 · · · 0 −an−1
0 1 · · · 0 −an−2
...

...
. . .

...
...

0 0 · · · 1 −a1



x1
x2
...
xn

+


bn − anb0

bn−1 − an−1b0
...

b1 − a1b0

u

y =
[
0 0 · · · 0 1

]

x1
x2
...

xn−1
xn

+ b0u.

(2)

On the other hand, the state-space representation in the canonical controllable form is given by
ẋ1
ẋ2
...
ẋn

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1



x1
x2
...
xn

+


0
0
...
0
1

u

y =
[
bn − anb0 bn−1 − an−1b0 · · · b2 − a2b0 b1 − a1b0

]

x1
x2
...

xn−1
xn

+ b0u.

(3)
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Z-transform.

Denote by Z {u(n)} the Z-transform of discrete-time signal u(n) where n = 0, 1, . . ..

• Unit step signal u(n): Z {u(n)} =
1

1− z−1

• Time-shifting property: Z {u(n− k)} = z−kU(z)

Transformation from s-domain to z-domain

• The bilinear transformation: s 7→ 2

T

1− z−1

1 + z−1

• The backward-Euler transformation: s 7→ 1

T
(1− z−1)

Optimal state feedback control design(LQR)

The Riccati equation, that is related to the optimal state feedback, reads as

ATP + PA− PBR−1BTP +Q = 0, (4)

where Q and R are related to the cost function

J =

∫ ∞
0

xT (τ)Qx(τ) + uTRu(τ)dτ. (5)

The optimal state feedback controller is given by u(t) = −R−1BTPx(t).

State observer design

For a state-space system described by

ẋ = Ax+Bu

y = Cx+Du,
(6)

where x is the actual state and y is the measured signal, a state observer for such system has the
following structure

˙̂x = Ax̂+Bu+ L(y − ŷ)

ŷ = Cx̂,
(7)

where x̂ is the estimated state and y is the corresponding estimated output.
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Transfer function of time delay

For a time delay operator

y(t) = u(t− T ) (8)

where T is the delay time, its Laplace transform is given by

Y (s)

U(s)
= e−sT . (9)

From this transfer function, the corresponding Bode plot is given by unity amplitude for all
frequencies and the phase plot is linear with respect to the frequency, i.e.,

φ(ω) = −ωT, (10)

for all frequencies ω.
The first order Padé approximation of the delay transfer function e−ωT is given by

e−ωT ≈
1− T

2
s

1 + T
2
s
. (11)
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1. (10 TOTAL points) Consider the autonomous-driving car shown in fig. 1

Figure 1: Autonomous driving car being built by Google.

(a) (5 points) Identify three possible user demands, three possible functional requirements,
and three possible design parameters.

Solution:

• User Demands:

– Silent, fast, safe to collisions, economical, high efficiency...

• Functional requirements:

– the car must recognize pass-by walkers; car must be able to regulate its
velocity; energy efficiency should be of x hours or y kilometers; ...

• Design Parameters:

– Car should have sensors to detect large objects to avoid collisions; the
material of the car should be ecologically friendly; car should fit 2 persons
comfortably,....
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(b) (5 points) Referring to the mechatronic block diagram shown in fig. 2 identify at least 2
elements of the autonomous driving car for the each of the following items.

• measured variables

• manipulated variables

• reference variables

• sensors

• actuators

• man/machine interface

• energy supply

4 1 Integrated Mechanical Electronic Systems

information, and such a system is characterized at least by a mechanical
energy flow and an information flow.

monitored
variables

measured
variables

Figure 1.3. Mechanical process and information processing develop towards a mechatronic
system

These integrated mechanical-electronic systems are increasingly called
mechatronic systems.

Thus, MECHAnics and ElecTRONICS are conjoined. The word "me
chatronics" was probably first created by a Japanese engineer in 1969, Kyura,
Oho (1996). Several definitions can be found in the literature. The journal
Mechatronics (1991) uses the following scope: "Mechatronics in its fun
damental form can be regarded as the fusion of mechanical and electrical
disciplines in modem engineering processes. It is a relatively new concept to
the design of systems, devices and products aimed at achieving an optimal
balance between basic mechanical structures and its overall control." In the
IEEE/ASME Transactions on Mechatronics (1996), a preliminary definition
is given: "Mechatronics is the synergetic integration of mechanical enginee
ring with electronics and intelligent computer control in the design and
manufacturing of industrial products and processes." (Harashima, Tomizuka
(1996)).

The IFAC Technical Committee on Mechatronic Systems, founded in
2000, IFAC-TC 4.2, uses the following description: "Many technical
processes and products in the area of mechanical and electrical engineering
show an increasing integration of mechanics with electronics and information
processing. This integration is between the components (hardware) and the
information-driven function (software), resulting in integrated systems called
mechatronic systems. Their development involves finding an optimal balance
between the basic mechanical structure, sensor and actuator implementation,

Figure 2: Mechatronics Block

Solution:

• measured variables: local position, global position, speed, humidity, temperature,
light, ...

• manipulated variables: speed, local position, global position, light,...

• reference variables: speed, safety distance to avoid collision, ...

• sensors: GPS, sensors to detect obstacles, humidity sensor, temperature sensor,...

• actuators: motors/actuators to turn, move forwards/backwards/stop, activate
wipers, etc.

• Man/machine interface: Computers on board, telemetry,...

• Energy supply: Batteries, Hydrogen, Solar, ...
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2. ( 30 TOTAL points) Suppose that a transfer function of an industrial process from the input
u to the measurement output y is given by

Y (s)

U(s)
=

1

s2 + s− 1
. (12)

(a) (1 point) Is the system stable or unstable? Why?

Solution: The system is unstable because one root of the characteristic polynomial
has positive real part.

(b) (1 point) Obtain the state-space representation of the system in the controllable canonical
form.

Solution:

ẋ =

[
0 1
1 −1

]
x+

[
0
1

]
u

y =
[
1 0

]
x

(13)

(c) (12 points) Suppose that the production cost of the industrial process is given by

J =

∫ ∞
0

(
3x21(τ) + 2x1(τ)x2(τ) + 2x22(τ) + 10u2(τ)

)
dτ. (14)

Show that the solution to the Riccati equation is given by

P =

[
35.69 21.40
21.40 13.41

]
(15)

and then obtain the optimal feedback controller that stabilizes the system and minimizes
the cost J .

Solution: The Riccati equation reads as

[
0 1
1 −1

] [
p1 p2
p2 p3

]
+

[
p1 p2
p2 p3

] [
0 1
1 −1

]
− 1

10

[
p1 p2
p2 p3

] [
0
1

] [
0 1

] [p1 p2
p2 p3

]
=

[
−3 −1
−1 −2

]
(16)

from which we obtain three equations

− 1

10
p22 + 2p2 = −3 (17)

− 1

10
p2p3 + p1 − p2 + p3 = −1 (18)
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and

− 1

10
p23 + 2p2 − 2p3 = −2. (19)

From eq. (17) we obtain two values of p2 namely −1.4 and 21.4. We choose p2 = 21.4.

Next, from eq. (19) we obtain two values of p3, but we choose p3 = 13.4.

Finally from eq. (18) we get p1 = 35.6. Therefore

P =

[
35.6 21.4
21.4 13.4

]
. (20)

The controller is obtained from u = −R−1BTPx, which gives

u =
[
−2.14 −1.34

]
x (21)

(d) (12 points) Suppose now that the industrial process is hazardous. Therefore, it is not
possible to have measurements of all the states. Design a state observer to estimate the
internal states. It is required that the observer has an exponential convergence rate of at
least 10, that is |x(t)− x̂(t)| ≤ |x(0)− x̂(0)| exp(−10t).

Solution: Let

L =

[
l1
l2

]
(22)

The matrix A− LC reads as

A− LC =

[
−l1 1

1− l2 −1,

]
(23)

and has a characteristic polynomial

p(s) = s2 + (1 + l1)s+ l1 + l2 − 1 (24)

To design the observer, let α > 10, β > 10 and define a desired polynomial as
pd(s) = (s + α)(s + β) = s2 + (α + β)s + αβ. To obtain l1 and l2 from p(s) = pd(s).
By the choice of α and β we guarantee that the convergence rate is at least 10. The
we obtain

l1 = α + β − 1

l2 = 2 + αβ − α− β
(25)

*Note: students may choose arbitrary numerical values for α and β as long as they are
greater that 10.
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(e) (4 points) Finally, assume that you want to implement the optimal state feedback controller
using the estimated states. Is this possible?

If yes, why and how would you do it?

If not, why and what would you propose as a solution?

Motivate your answer and provide enough justification.

Solution: Yes it is possible, the justification is the separation principle. Once we
have designed the state observer and the feedback controller, we just substitute the
feedback control law u = −Kx by u = −Kx̂. If we then write the combined error
dynamics, we get the system[

ėc
ėo

]
=

[
A−BK BK

0 A− LC

] [
ec
eo

]
(26)

where ec denotes the error for the control system and eo denotes the estimation error.
Since the matrices A−BK and A−LC are stable, the overall error dynamics converge
to 0.
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3. (35 TOTAL points) Consider the mechanical system shown in fig. 3

M

m,J

θ

k

`
x

y

F

x

Ffriction

Figure 3: A mechanical system

where M is the mass of the cart, m the mass of the pendulum, J the moment of inertia of the
pendulum, ` the length of the pendulum, x denotes the displacement of the cart from the rest
position, θ is the angle of the pendulum measured from its rest position, F denotes an external
force applied to the cart, and Ffriction denotes the friction force between the wheels of the cart
and the ground, and is given by Ffriction = bẋM . It is assumed that the pendulum is connected
to a spring with coefficient k and with force f(θ) = kθ.

(a) (1 point) Denote by (xM , yM ) the position of the cart and by (xm, ym) the position of the
pendulum. Suppose that the reference frame is located at the pendulum’s pivot point
when the system is at rest. Write down the cart’s position (xM , yM) and the pendulum’s
position (xm, ym) in terms of the variables (x, θ).

Solution:

• The horizontal position of the cart is xM = x.

• The vertical position of the cart is yM = 0.

• The horizontal position of the pendulum is xm = x+ ` sin θ.

• The vertical position of the pendulum is ym = −` cos θ
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(b) (10 points) Write down the Kinetic and Potential Energies of the system, and the La-
grangian function.

Hint: the contribution of the rotational spring to the potential energy is similar to a
linear spring. If f(θ) is the force exerted by the spring, then its (stored) potential energy

is Espring =

∫ θ

0

f(s)ds.

Solution: The total kinetic energy is given by the velocities contribution of the masses
and the inertia, that is:

K =
1

2
Mv2M +

1

2
mv2m +

1

2
Jω2

=
1

2
Mẋ2 +

1

2
m
(

(ẋ+ ` cos θθ̇)2 + (` sin θθ̇)2
)

+
1

2
Jθ̇2

=
1

2
Mẋ2 +

1

2
m
(
ẋ2 + 2` cos θẋθ̇ + `2 cos2 θθ̇2 + `2 sin2 θθ̇2

)
+

1

2
Jθ̇2

=
1

2
(M +m)ẋ2 +

1

2
m`2θ̇2 +m` cos θẋθ̇ +

1

2
Jθ̇2.

(27)

On the other hand, the potential energy of the system is given by

U =
1

2
kθ2 −mg` cos θ. (28)

Therefore, the Lagrangian function reads as

L =
1

2
(M +m)ẋ2 +

1

2
(m`2 + J)θ̇2 +m` cos θẋθ̇ − 1

2
kθ2 +mg` cos θ (29)

(c) (10 points) Obtain the equations of motion from the Lagrangian function obtained in part
(b). Recall that the equations of motion are obtained via the formula

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = Bu− ∂D

∂q̇
, (30)

where L is the Lagrangian, D the Rayleigh dissipation function, and B the input matrix.

Solution: We have:

∂L

∂x
= 0

∂L

∂θ
= −m` sin θẋθ̇ −mg` sin θ − kθ

∂L

∂ẋ
= (M +m)ẋ+m` cos θθ̇

∂L

∂θ̇
= (m`2 + J)θ̇ +m` cos θẋ

(31)
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It follows that

d

dt

(
∂L

∂ẋ

)
= (M +m)ẍ+m` cos θθ̈ −m` sin θθ̇2

d

dt

(
∂L

∂θ̇

)
= (m`2 + J)θ̈ +m` cos θẍ−m` sin θθ̇ẋ

(32)

Finally we get

(M +m)ẍ+m` cos θθ̈ −m` sin θθ̇2 = F − bẋ
(m`2 + J)θ̈ +m` cos θẍ+mg` sin θ + kθ = 0

(33)

(d) (9 points) Linearize the equations of motion obtained in part (c) around the equilibrium
point (x∗, θ∗, ẋ∗, θ̇∗) = (0, 0, 0, 0), and write down a state-space representation of the
linearized system assuming that the measured output is the position of the cart.

Hint: First, write the equations of motion of part (c) in the following format:

M(x, θ)

[
ẍ

θ̈

]
+ C(x, θ, ẋ, θ̇)

[
ẋ

θ̇

]
+G(x, θ) =

[
F
0

]
, (34)

where M(x, θ) is a 2× 2 symmetric, positive-definite, invertible matrix, C(x, θ, ẋ, θ̇) is a
2× 2 matrix, and G(x, θ) is a 2× 1 vector. Next, linearize the nonlinear terms of M(x, θ),
C(x, θ, ẋ, θ̇), and G(x, θ) around the equilibrium point. Finally choose appropriate state
variables to come up with the state-space representation.

Solution: Recall that sin θ ∼ θ and cos θ ∼ 1 near the equilibrium point. Therefore,
the linearized system reads as

(M +m)ẍ+m`θ̈ = F − bẋ
(m`2 + J)θ̈ +m`ẍ+mg`θ + kθ = 0

(35)

For convenience, let us write the previous equation in vector form as[
M +m m`
m` m`2 + J

] [
ẍ

θ̈

]
= −

[
b 0
0 0

] [
ẋ

θ̇

]
−
[
0 0
0 k +mg`

] [
x
θ

]
+

[
F
0

]
(36)

or equivalently[
ẍ

θ̈

]
=

[
M +m m`
m` m`2 + J

]−1(
−
[
b 0
0 0

] [
ẋ

θ̇

]
−
[
0 0
0 k +mg`

] [
x
θ

]
+

[
F
0

])
(37)

Again, for convenience let[
M +m m`
m` m`2 + J

]−1
=

1

(M +m)(m`2 + J)−m2`2

[
m`2 + J −m`
−m` M +m

]
=

[
α1 α2

α2 α3

] (38)
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Then we have that eq. (37) reads as[
ẍ

θ̈

]
= −

[
α1b 0
α2b 0

] [
ẋ

θ̇

]
−
[
0 α2(k +mg`)
0 α3(k +mg`)

] [
x
θ

]
+

[
α1

α2

]
F. (39)

Next, define state variables X = (X1, X2, X3, X4) = (x, θ, ẋ, θ̇). Note that x does not
appear in the equations of motion, so it is not necessarily a state variable. But since
we are told to choose the position of the cart as the output, we must include x in the
state variables. It follows that

Ẋ =


Ẋ1

Ẋ2

Ẋ3

Ẋ4

 =


0 0 1 0
0 0 0 1
0 −α2(k +mg`) −α1b 0
0 −α3(k +mg`) −α2b 0



X1

X2

X3

X4

+


0
0
α1

α2

F
y =

[
1 0 0 0

]
X.

(40)

(e) (5 points) Obtain a new but equivalent state space representation of the linear system
obtained in part (d). Is the input-output behavior of the new system equal to the
input-output behavior of the linear system obtained in (d)? Provide your arguments.

Solution: Let eq. (40) be denoted as

Ẋ = AX +Bu

y = CX,
(41)

and let T be a non-singular 2× 2 matrix. Let Z = TX. In terms of the new variable
Z, eq. (41) reads as

Ż = TAT−1Z + TBu

y = CT−1Z.
(42)

The input-output behavior of eq. (41) and of eq. (42) are the same since they have the
same transfer function. To see this fact, the trasnfer function of eq. (42) is given by

G(s) = CT−1
(
sI − TAT−1

)−1
TB

= C
(
T−1(sI − TAT−1)T

)−1
B

= C(sI − A)−1B,

(43)

which is the transfer function of eq. (41).
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4. (10 TOTAL points) Consider the problem of dynamical modeling of an electro-hydraulic system
for an assisted steering wheel in a car. It is a multi-domain system which consists of mechanical
system, fluid system and electrical system as shown in fig. 4. The Voltage source Vs is used to
rotate the valve through an electro-mechanical coupling device which has the relation of

ω = αVcoupling, iL = αT, (44)

where α is the coupling constant, ω is the angular velocity of the valve, iL is the current through
the inductor and T is the torque applied to the valve. The moment of inertia of the valve is
denoted by J . The angular position of the valve θ determines the flow rate Qm based of the
following relation:

P12 = f(θ)Q2
m, (45)

where f is a nonlinear function that depends on the valve position θ . The pressure source
Ps provides a constant pressure. Based on the pressure across the hydraulic motor P2r , the
hydraulic motor generates a force F that drives a mechanical system with mass m and which is
connected to a spring and a damper with constants k and b , respectively. The displacement of
the mechanical system is denoted by x and the velocity is denoted by v. The fluid mechanical
coupling device (or the hydraulic motor) satisfies

F = DP2r, Dv = Qm, (46)

where D is the coupling constant of the hydraulic motor. Derive the state equations of the full
system with the pressure Ps as the input and the velocity v as the measured output.

Figure 4: A simplified electro-hydro system of an assisted steering wheel in a car.
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Solution: From the mechanical side we have mẍ = F − kx− bẋ = DP2r − kx− bẋ and

Jω̇ = T =
iL
α

. From the electrical side we have VR + VL + Vs − Vcoupling=0, which implies

L
diL
dt

= −RiL − Vs +
ω

α
. From the hydraulic side we have Ps = P12 + P2r, which implies

P2r = Ps−f(θ)Q2
m = Ps−f(θ)D2v2. Next we choose as state variables (θ, ω, x, v, iL). Thus

we have

θ̇ = ω

ω̇ =
1

J

iL
α

ẋ = v

v̇ =
D

m
(Ps − f(θ)D2v2)− k

m
x− b

m
v

i̇L = −R
L
iL −

1

L
Vs +

1

αL
ω

(47)

Then the state space representation reads as


θ̇
ω̇
ẋ
v̇

i̇L

 =


0 1 0 0 0
0 0 0 0 1/Jα
0 0 0 1 0
0 0 −k/m −b/m 0
0 1/αL 0 0 −R/L



θ
ω
x
v
iL

+


0
0
0

−D/mf(θ)D2v2

−Vs/L

+


0
0
0

D/m
0

Ps

y =
[
0 0 0 1 0

]

θ
ω
x
v
iL


(48)
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5. (15 TOTAL + 5 bonus points) Consider a plant described by the transfer function

G(s) =
0.5

s2 + 3s+ 2
, (49)

and a proportional controller with transfer function C(s) = 2. The loop gain is defined as
L(s) = G(s)C(s). The Nyquist plot of L(s) is shown in fig. 5.
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Figure 5: Nyquist plot of the loop gain L(s) = G(s)C(s)

(a) (5 points) What is the phase margin of the loop gain?

Hint: You can obtain the answer either from fig. 5 or by remembering that the phase
margin is computed as PM = −π − ∠L(jω∗), where ω∗ is the frequency at which the
norm of L(s) is equal to 1.

Solution: From fig. 5 we see that the plot of L(jω) does not intersect the unit circle,
in other words |L(jω)| = |G(jω)C(jω| = 1 is never satisfied. This means that the
phase margin is infinite.

(b) (3 bonus points) Give a physical interpretation of the result obtained in (a). In particular,
what can you say about the stability of the system under time-delays?

Solution: The system is robust under time-delays, that is, the stability of the system
is not affected by time delays.

(c) (5 points) Suppose that now, a control engineer suggests a new controller with transfer
function C̄(s) =

√
72. The Nyquist plot of the loop gain L̄(s) = G(s)C̄(s) is shown in

fig. 6. What is the phase margin of L̄(s)?
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Figure 6: Nyquist plot of the loop gain L̄(s) = G(s)C̄(s)

Solution: From the plot we see that the phase margin is −π
2

. However, this can be

also computed as follows.

First obtain ω∗ such that |G(jω∗)C̄(jω∗)| = 1. We have

|0.5
√

72|
|(jω∗)2 + 3(jω∗) + 2|

= 1

0.25(72)

(−(ω∗)2 + 2)2 + 9(ω∗)2
= 1

18

(ω∗)4 + 5(ω∗)2 + 4
= 1

(50)

which leads to the equation

(ω∗)4 + 5(ω∗)2 − 14 = 0. (51)

Solving for a positive and real ω∗ we find ω∗ =
√

2. Next we find the phase of the loop
gain when ω = ω∗, that is

∠G(jω∗)C(jω∗) = ∠

(
0.5
√

72

(j
√

2)2 + 3(j
√

2) + 2

)

= ∠

( √
72

6
√

2j

)
= −π

2
.

(52)
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Finally using the formula PM = −π − ∠L(jω∗) we get

PM = −π −
(
−π

2

)
= −π

2
(53)

(d) (5 points) What is the maximum time delay that it is allowed in the new system such
that the dynamics remain stable?

Solution:

We have obtained that the phase margin is −π
2

, and we know that a time delay shifts

the angle ∠L(s) along the unit circle by Tdω
∗. This means that the time delay should

shift ∠L(s) by less that −π
2

, that is Tdω
∗ <

π

2
. Therefore Td <

π

2
√

2
∼ 1.1s

(e) (2 bonus points) Compare the system in part (a) with the system in part (c), and describe
the difference you notice. What can you say about their behavior under time-delays? Is
one or the other better in that regard?

Solution: Introducing a higher proportional gain of the controller compromises the
robustness with respect to time delays, meaning that, with respect to the ability to
handle time delays, system in part (a) is better that system in part (c).
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6. ( 5 bonus points) In the non-linear system below

N.L
e

K1 ∗G(p)
y

the plant is stable and the Nyquist plot of the loop gain L(s) = K1G(s) is shown in fig. 7
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Figure 7: Nyquist plot of K1G(s)

The nonlinearity NL is given by a nonlinear sector with boundaries [k1, k2]. It is known
that, due to the behavior of the nonlinearity, the boundaries satisfy k1 < 0 and k2 > 0.
Choose appropriate bounds k1 and k2 such that the origin of the closed loop system is globally
asymptotically stable. Motivate your answer.

Solution: From the circle criteria, we must choose the boundaries k1, k2 in such a way
that the disk D(k1, k2) contains the Nyquist plot. This is done by choosing for example
−1 < k1 < 0 and 0 < k2 < 2.

*Students may choose any numerical value that satisfies the above argument.
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