EXAM MECHATRONICS (SOLUTIONS)
TUESDAY 24 JANUARY 2017, 9.00 - 12.00 h.

Name: StudentID:

e This exam consists of 23 pages with 6 open questions. Check if you have all pages.

e The answers to each question (including motivation) have to be placed in the answer boxes.
o Write neatly.

e Write your name and student number in all pages. The exercises will be collected separately.

e If you like, you can use and add additional paper, which needs to include your name and
student number. Please provide separate papers for separate exercises. Hand in the exercises
on separate piles.

e You can earn a maximum of 100 points at the exam. The amount of points spread over the
exercises is 110 points, i.e., there are 10 bonus points to be earned.

e You will only get a grade if you have finalized the practical.
e This is a CLOSED book exam.
e Good luck!
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The other analogy for linear systems as was treated in Control Engineering, and is
useful for Euler-Lagrange modeling.

Kinetic coenergy Potential energy Rayleigh dissipation function

Translation  T*(z) = Em% V(z) = iﬁcu:"}’ D(z) = %bd—g
. A 2 . ; i
Rotation T*(8) = 2J% V(0) = L k6° D(8) = }ij—
. _y dy 2 v . dg
Electric T*(q) = ;L5 V(g) = 354° D(g) = Rdt

Canonical forms

The state-space representation for a given transfer function is not unique, i.e., there are infinite-
number of possibilities to express a given transfer function in state-space form. However, there
are several forms that can be helpful in the design of controller or observer. Let us consider the
following general transfer function for single-input single-output system:

Y(s)  bos" 415" 4+ byqs+ by
U(s) s"4aps" 4 dap_15+a,

(1)

For this transfer function, the state-space representation in canonical observable form is
given by

T 00 0 —an T by, — anbo
T 10 0 =t x b1 — ay_1b
2 _ 0 1 O T .2 4 n—1 .n—10 u
- s (2)
X1
X2
y=1[0 0 - 0 1] | : | +bou
Tp—1
- xn =

On the other hand, the state-space representation in the canonical controllable form is given by

i 0 1 0 ..o 0 . 0

.1 0 0 1 - 0 ! 0

To o)

=1 : : : IR e A
. 0 0 0 R | ’ 0
n —Qy, —Qp_1 —Qp_o - —Q n 1
: : S 3
x1
o)
y=[by—anby bp1—an_1by - by —ashy by —aibo) © |+ bou.
Tn—1

Page 3



Name: Student ID:

Z-transform.

Denote by Z {u(n)} the Z-transform of discrete-time signal u(n) where n =0,1,....

1

e Unit step signal u(n): Z {u(n)} = T
— 2z

e Time-shifting property: Z {u(n — k)} = 27*U(z)

Transformation from s-domain to z-domain

21—271
e The bilinear transformation: s — — i
T1+ 271

1
e The backward-Euler transformation: s — ?(1 —z

Optimal state feedback control design(LQR)

The Riccati equation, that is related to the optimal state feedback, reads as
ATP+ PA—-PBR'BTP+Q =0,
where () and R are related to the cost function
J = /00 27 (7)Qx(7) + vl Ru(7)dr.
0
The optimal state feedback controller is given by u(t) = —R™'BT Pz(t).

State observer design

For a state-space system described by

&= Ax + Bu
y = Cx + Du,

(6)

where x is the actual state and y is the measured signal, a state observer for such system has the

following structure

2
I

Az + Bu+ L(y — 9)
Cz,

<>
I

where 7 is the estimated state and y is the corresponding estimated output.
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Transfer function of time delay

For a time delay operator

y(t) =u(t —T) (8)

where T is the delay time, its Laplace transform is given by

=e . 9)

From this transfer function, the corresponding Bode plot is given by unity amplitude for all
frequencies and the phase plot is linear with respect to the frequency, i.e.,

@(W) = _WTv (10)

for all frequencies w.

The first order Padé approximation of the delay transfer function e™

T is given by

1-ZLs
e T~ 2_, (11)
1+ 58
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1. (10 TOTAL points) Consider the autonomous-driving car shown in fig. 1

Figure 1: Autonomous driving car being built by Google.

(a) (5 points) Identify three possible user demands, three possible functional requirements,
and three possible design parameters.

Solution:

e User Demands:
— Silent, fast, safe to collisions, economical, high efficiency...
e Functional requirements:

— the car must recognize pass-by walkers; car must be able to regulate its
velocity; energy efficiency should be of x hours or y kilometers; ...

e Design Parameters:

— Car should have sensors to detect large objects to avoid collisions; the
material of the car should be ecologically friendly; car should fit 2 persons
comfortably,....
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(b) (5 points) Referring to the mechatronic block diagram shown in fig. 2 identify at least 2
elements of the autonomous driving car for the each of the following items.
e measured variables
e manipulated variables
e reference variables
® Sensors
e actuators

e man/machine interface

e cnergy supply

man/machine
interface

reference
variables

information
processing

monitored
variables

manipulated ~—€———— measured
variables information flow variables

energy flow
ese——

actua- mechanics and

tors energy converter [ | SENSOrs

A A primary consumer
energy energy
flow ¥ flow
energy
con-
sumer

auxiliary
energy
supply

energy
supply

mechanical
hydraulic
thermal
electrical

Figure 2: Mechatronics Block

Solution:

e measured variables: local position, global position, speed, humidity, temperature,
light, ...

e manipulated variables: speed, local position, global position, light,...
e reference variables: speed, safety distance to avoid collision, ...
e sensors: GPS, sensors to detect obstacles, humidity sensor, temperature sensor,...

e actuators: motors/actuators to turn, move forwards/backwards/stop, activate
wipers, etc.

e Man/machine interface: Computers on board, telemetry,...

e Energy supply: Batteries, Hydrogen, Solar, ...
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2. (130 TOTAL points) Suppose that a transfer function of an industrial process from the input
u to the measurement output y is given by
Y (s) 1

U(s)ZSQ—I-s—l' (12)

(a) (1 point) Is the system stable or unstable? Why?

Solution: The system is unstable because one root of the characteristic polynomial
has positive real part.

(b) (1 point) Obtain the state-space representation of the system in the controllable canonical
form.

Solution:

(¢) (12 points) Suppose that the production cost of the industrial process is given by
J = / (327(7) 4 221 ()22 () + 225(7) + 10u?(7)) dr. (14)
0

Show that the solution to the Riccati equation is given by

P {35.69 21.40}

21.40 13.41 (15)

and then obtain the optimal feedback controller that stabilizes the system and minimizes
the cost J.

Solution: The Riccati equation reads as

N R e | et e IR e

(16)
from which we obtain three equations
1, )
ol T 2py = =3 (17)
1
—1pPeps +p1—p2t+p3=-—1 (18)
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and

1
—Epg + 2py — 2p3 = —2. (19)

From eq. (17) we obtain two values of p, namely —1.4 and 21.4. We choose py = 21.4.
Next, from eq. (19) we obtain two values of p3, but we choose p3 = 13.4.
Finally from eq. (18) we get p; = 35.6. Therefore

35.6 21.4
P= {21.4 13.4] ’ (20)
The controller is obtained from v = —R™' BT Pz, which gives
u=[-214 —-134]z (21)

(d) (12 points) Suppose now that the industrial process is hazardous. Therefore, it is not
possible to have measurements of all the states. Design a state observer to estimate the
internal states. It is required that the observer has an exponential convergence rate of at
least 10, that is |z(t) — 2(t)| < |z(0) — 2(0)| exp(—10¢).

Solution: Let
L= H (22)
ly
The matrix A — LC reads as

[ -n1
A—LC_L_Z2 _1’] (23)

and has a characteristic polynomial

p(s) =8>+ (L +1)s+ 1 +1p—1 (24)

To design the observer, let a > 10, f > 10 and define a desired polynomial as
pa(s) = (s +a)(s + B) = s> + (a + B)s + af. To obtain I; and I, from p(s) = py(s).
By the choice of o and 8 we guarantee that the convergence rate is at least 10. The
we obtain

lle[—f-B—]_

lb=2+af—-a—-p (25)

*Note: students may choose arbitrary numerical values for o and [ as long as they are
greater that 10.
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(e) (4 points) Finally, assume that you want to implement the optimal state feedback controller

using the estimated states. Is this possible?
If yes, why and how would you do it?
If not, why and what would you propose as a solution?

Motivate your answer and provide enough justification.

Solution: Yes it is possible, the justification is the separation principle. Once we
have designed the state observer and the feedback controller, we just substitute the

feedback control law v = —Kz by u = —Kz. If we then write the combined error
dynamics, we get the system

é| |A-—BK BK €c

B (o

where e, denotes the error for the control system and e, denotes the estimation error.
Since the matrices A — BK and A — LC are stable, the overall error dynamics converge
to 0.
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3. (35 TOTAL points) Consider the mechanical system shown in fig. 3

>T

g m,J Frriction
@) O.—

Figure 3: A mechanical system

where M is the mass of the cart, m the mass of the pendulum, J the moment of inertia of the
pendulum, ¢ the length of the pendulum, = denotes the displacement of the cart from the rest
position, # is the angle of the pendulum measured from its rest position, F' denotes an external
force applied to the cart, and Flicion denotes the friction force between the wheels of the cart
and the ground, and is given by Fltyiction = bZas. It is assumed that the pendulum is connected
to a spring with coefficient & and with force f(0) = k6.

(a) (1 point) Denote by (xar, yas) the position of the cart and by (2, ym) the position of the
pendulum. Suppose that the reference frame is located at the pendulum’s pivot point
when the system is at rest. Write down the cart’s position (2, yys) and the pendulum’s
position (&, ym,) in terms of the variables (z, 0).

Solution:

e The horizontal position of the cart is xy; = .
e The vertical position of the cart is yy, = 0.
e The horizontal position of the pendulum is z,, = x + £sin6.

e The vertical position of the pendulum is y,, = —¢cos @
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(b) (10 points) Write down the Kinetic and Potential Energies of the system, and the La-

grangian function.
Hint: the contribution of the rotational spring to the potential energy is similar to a
linear spring. If f(0) is the force exerted by the spring, then its (stored) potential energy

9
is Espring :/ f(s)ds.
0

Solution: The total kinetic energy is given by the velocities contribution of the masses
and the inertia, that is:

1 1 1
K — _M 2 - 2 - 2
5 vy + 2mvm+ 2Jw
_ L 1 ; 7)2 in o2 170
=-Mi*+ -—m ((Z+ (cosb0)” + ({sinh0)” ) + - J0
Lo, | S e
= §Mm'2 + o™ (9’52 + 20 cos 036 + % cos® 90* + (* sin? 892> + §J92
1 1 . N
= E(M + m)i?* + §m€292 + m/ cos 030 + §J92.
On the other hand, the potential energy of the system is given by
1
U= §k62 — mgl cosb. (28)

Therefore, the Lagrangian function reads as

L= %(M +m)i? + %(mé2 + J)6% + ml cos 06 — %k@Q + mgl cos (29)

(c) (10 points) Obtain the equations of motion from the Lagrangian function obtained in part

(b). Recall that the equations of motion are obtained via the formula

d (0L oL oD
dfoL .\ _oL . . 0D
o ( 2 (q,q)) 9 (¢,9) v G (30)

where L is the Lagrangian, D the Rayleigh dissipation function, and B the input matrix.

Solution: We have:

=

ox
I .

(2—9 = —m¥sin 010 — mglsin @ — k6
L .

g_j; = (M 4+ m)z + mtcos 00
I :

% = (ml? + J)0 + ml cos 0

(31)
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It follows that
L N .
% (g—) = (M + m)# + ml cos 0 — m{ sin 06°
by
d (0L . : (32)
pr (%) = (ml* + J)0 + ml cos 03 — ml sin 00
Finally we get
(M +m)@ + ml cos 06 — mlsin 06> = F — bi: (33)
(me* + J)6 + ml cos i + mglsinf + kO = 0

(d) (9 points) Linearize the equations of motion obtained in part (c) around the equilibrium

point (x*,Q*,j:*,é*) = (0,0,0,0), and write down a state-space representation of the
linearized system assuming that the measured output is the position of the cart.
Hint: First, write the equations of motion of part (c¢) in the following format:

M(z,0) m +C(x,0,,6) m +G(,0) = m , (34)
where M (x,6) is a 2 x 2 symmetric, positive-definite, invertible matrix, C(z, 0, z, 9) is a
2 x 2 matrix, and G(z,0) is a 2 x 1 vector. Next, linearize the nonlinear terms of M(z, ),
C(z,0,2,0), and G(z,0) around the equilibrium point. Finally choose appropriate state
variables to come up with the state-space representation.

Solution: Recall that sinf ~ 6 and cosf ~ 1 near the equilibrium point. Therefore,
the linearized system reads as

(M 4 m)# +mld = F — bi:

i} 35
(ml? + J)0 + mli +mglf + ko = 0 (35)

For convenience, let us write the previous equation in vector form as

M+ m ml @__b()x:_() 0 x+F (36)
mé  me+J| 6] |0 0] |6 0 k+mgt| |6 0
or equivalently
i) _[Mam w17 o 0[] [0 0 ([« [F (37)
6| | ml  ml+J 0 0f |6 0 k+mgl| |6 0
Again, for convenience let

M+m mt ] 1 mi®+J  —ml
ml  me+J| (M +m)(me?+J)—m22 | —mf M+m

|01 Qo
Qo Q3

] (38)
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Then we have that eq. (37) reads as
il faab O] [Z] [0 as(k+mgl)| |x o
M = {agb o} M [0 ask +mgt)] (6] T [as] (39)

Next, define state variables X = (X1, Xo, X3, Xy) = (z, 6, , 0) Note that x does not
appear in the equations of motion, so it is not necessarily a state variable. But since
we are told to choose the position of the cart as the output, we must include z in the
state variables. It follows that

X, 0 0 1 0] [X, 0

o | x| _ |0 0 0 1 |Xaf |0
X5 0 —as(k+mgl) —ab 0| | X3 o (40)
X4 0 —Oég(k’ + mgf) —Ckgb 0 X4 (6)

y=[10 0 0] X.

(e) (5 points) Obtain a new but equivalent state space representation of the linear system

obtained in part (d). Is the input-output behavior of the new system equal to the
input-output behavior of the linear system obtained in (d)? Provide your arguments.

Solution: Let eq. (40) be denoted as

X = AX + Bu

41
= CX. (41)

and let T" be a non-singular 2 x 2 matrix. Let Z = T'X. In terms of the new variable
Z, eq. (41) reads as
Z=TAT'Z +TBu

42
y=CT'Z (42)

The input-output behavior of eq. (41) and of eq. (42) are the same since they have the
same transfer function. To see this fact, the trasnfer function of eq. (42) is given by

G(s)=CT ™' (s —TAT")"'TB
— O (T " (sI —TAT™HT) "' B (43)
=CO(sl — A)'B,

which is the transfer function of eq. (41).
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4. (10 TOTAL points) Consider the problem of dynamical modeling of an electro-hydraulic system
for an assisted steering wheel in a car. It is a multi-domain system which consists of mechanical
system, fluid system and electrical system as shown in fig. 4. The Voltage source V is used to
rotate the valve through an electro-mechanical coupling device which has the relation of

w = OA/coupling? i = CYT, (44>

where « is the coupling constant, w is the angular velocity of the valve, 7y, is the current through
the inductor and T is the torque applied to the valve. The moment of inertia of the valve is
denoted by J. The angular position of the valve 8 determines the flow rate @), based of the
following relation:

P12 = f(e) gn’ (45>

where f is a nonlinear function that depends on the valve position 6 . The pressure source
P, provides a constant pressure. Based on the pressure across the hydraulic motor P, , the
hydraulic motor generates a force F' that drives a mechanical system with mass m and which is
connected to a spring and a damper with constants k and b , respectively. The displacement of
the mechanical system is denoted by x and the velocity is denoted by v. The fluid mechanical
coupling device (or the hydraulic motor) satisfies

F =DP,,., Dv=Qp, (46)

where D is the coupling constant of the hydraulic motor. Derive the state equations of the full
system with the pressure P, as the input and the velocity v as the measured output.

o0
. cougliny -

[ Electrical-Mechanical ]

coupling

T @= angular velocity
6 = angular displacement
J = moment of inertia of valve
x=displacement

e N v=velocity
ot — 2 —

/_ 1 Q ’ Fluid-Mech al 4;: AN \\\
m uia-. g{.‘_ IC F \

Coup hng, a Mass (m)
(Hydraulic N
Motor) _:|_§
b R

A,
P

S —
J U

Figure 4: A simplified electro-hydro system of an assisted steering wheel in a car.
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Solution: From the mechanical side we have mi = F' — kx — bt = DP,, — kx — b and

Ju=T= Z—L. From the electrical side we have Vr + Vi, + Vi — Vioupling=0, Which implies
@

Ji

L% = —Rip — Vs + ¥ From the hydraulic side we have P, = Py + P,,, which implies
a

Py, = P,— f(0)Q?, = P,— f(0)D*v*. Next we choose as state variables (6, w, x,v,4r). Thus

we have

0=w

.l

YT

0= Q(Ps—f(O)D%Q)—Ex—ﬁv
m m m

; . 1 1
11, = —Z’LL—Z‘/S—FEM

Then the state space representation reads as

0 0 1 0 0 0 0 0 0

W 0 0 0 0 Yl |w 0 0

il=10 0 0 1 0 T |+ 0 +10 |P,

¥ 0 0 —km —bm 0 v —D/mf(0)D*v* D/,

ir 0 Yar 0 0 —R/i| |iL —Vi/L 0 (49)
0
w

y=1[0 001 0] |z

v
ir
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5. (15 TOTAL + 5 bonus points) Consider a plant described by the transfer function

0.5

_ 49
s24+3s+2’ (49)

G(s) =

and a proportional controller with transfer function C(s) = 2. The loop gain is defined as
L(s) = G(s)C(s). The Nyquist plot of L(s) is shown in fig. 5.

unit circle
Nyquist Diagram

/
// \\
0.5 / \ 4
/

2
X
<
Py

©c O0F + al
£
(o))
©
E

-0.5 - / 4

L /
1L — 4
-1.5 -1 -0.5 0 0.5 1 1.5

Real Axis

Figure 5: Nyquist plot of the loop gain L(s) = G(s)C(s)

(a) (5 points) What is the phase margin of the loop gain?
Hint: You can obtain the answer either from fig. 5 or by remembering that the phase
margin is computed as PM = —7 — ZL(jw"), where w” is the frequency at which the
norm of L(s) is equal to 1.

Solution: From fig. 5 we see that the plot of L(jw) does not intersect the unit circle,
in other words |L(jw)| = |G(jw)C(jw| = 1 is never satisfied. This means that the
phase margin is infinite.

(b) (3 bonus points) Give a physical interpretation of the result obtained in (a). In particular,
what can you say about the stability of the system under time-delays?

Solution: The system is robust under time-delays, that is, the stability of the system
is not affected by time delays.

(¢) (5 points) Suppose that now, a control engineer suggests a new controller with transfer
function C(s) = V/72. The Nyquist plot of the loop gain L(s) = G(s)C(s) is shown in
fig. 6. What is the phase margin of L(s)?
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Nyquist Diagram

Imaginary Axis
o o
o o 3

'
—_

—_
o1
T
1

0
Real Axis

Figure 6: Nyquist plot of the loop gain L(s) = G(s)C(s)

T
Solution: From the plot we see that the phase margin is —5 However, this can be

also computed as follows.
First obtain w* such that |G(jw*)C(jw*)| = 1. We have

10.5v/72] B
|(jw*)? + 3(jw*) + 2|
25(72
0.25(72) _1 (50)
(=(w*)? 4 2)? + 9(w")?
18 _ 1
which leads to the equation
(W) +5(w*)? — 14 = 0. (51)

Solving for a positive and real w* we find w* = v/2. Next we find the phase of the loop
gain when w = w™, that is

o 0.5v/72
£G(jwr)C(jw") = £ ((j\/i)2+3(j\/§) +2)

_ (VT _ T
S \eve2i )2
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Finally using the formula PM = —7m — ZL(jw") we get

PM = —7 — (—g) - —g (53)

(d) (5 points) What is the maximum time delay that it is allowed in the new system such

that the dynamics remain stable?

Solution:

™
We have obtained that the phase margin is —5 and we know that a time delay shifts

the angle ZL(s) along the unit circle by T,w*. This means that the time delay should
shift ZL(s) by less that —g, that is Tyw™* < g Therefore T; < T 1s

2v/2

(e) (2 bonus points) Compare the system in part (a) with the system in part (c), and describe

the difference you notice. What can you say about their behavior under time-delays? Is
one or the other better in that regard?

Solution: Introducing a higher proportional gain of the controller compromises the
robustness with respect to time delays, meaning that, with respect to the ability to

handle time delays, system in part (a) is better that system in part (c).
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6. ( 5 bonus points) In the non-linear system below

%Te N.L K, = G(p)

the plant is stable and the Nyquist plot of the loop gain L(s) = K;G(s) is shown in fig. 7

Nyquist Diagram

Imaginary Axis

-1.5 -1 0.5 1 1.5

0 .
Real Axis
Figure 7: Nyquist plot of K1G(s)

The nonlinearity NL is given by a nonlinear sector with boundaries [k, k2]. It is known
that, due to the behavior of the nonlinearity, the boundaries satisfy k& < 0 and ks > 0.
Choose appropriate bounds k; and ks such that the origin of the closed loop system is globally
asymptotically stable. Motivate your answer.

Solution: From the circle criteria, we must choose the boundaries k1, ky in such a way
that the disk D(kq, ko) contains the Nyquist plot. This is done by choosing for example
—1 <k <0Oand 0 < ky < 2.

*Students may choose any numerical value that satisfies the above argument.
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